Allstream NGN SIP Trunking Quick Start Guide

We are confident that our service will help increase your organization's performance and productivity while keeping a cap on your costs. Summarized below is some important technical information that you or your integrator must know regarding how SIP Trunking works, and parameters that your equipment needs to adhere to in order to effectively work with the service. Please ensure that your equipment is configured to support these parameters. If you have any further questions or require assistance, please contact your Account Representative.

Allstream NGNSIP Security Recommendations

A VoIP switch is a crucial component of your business that much like a server with critical data requires attention to ensure its operation and availability is not impacted by hackers, hacktivists, competitors and others attempting to gain access to free services or impact the services you have.

It's essential that the PBX manufacturer's hardening recommendations be followed when connecting your PBX to public or Internet resources such as NGN SIP trunks or phones. Included are some initial recommendations. Suffice it to say that connecting your PBX directly to the Internet without a firewall or SBC (Session Border Controller) is not manufacturer recommended except for the very few PBX's that come equipped with such capabilities. Doing so will most likely result in possible fraudulent long distance charges as well as costly professional services to properly re-configure or re-install and harden the PBX.

Administration
- Remove any direct external (public/internet) access to administration features
- Use complex non-dictionary passwords
- Change passwords every quarter
- Ensure external/public admin access is only available via secure (IPSec, SSL-VPN, etc) authenticated connection to the firewall or other security device

Internet Access
- Enable firewall features on PBX if available
- Add or connect to the Internet via a stateful firewall or SBC
- Add filters to only allow connectivity to and from NGN SIP provider

System
- Disable unused services where applicable
- If Wireless is available used WPA2 with complex password
- Monitor system regularly for Fraud

Operations
- Upon deployment, scan your Internet presence (ie. IP range) for vulnerabilities
- Repeat vulnerability scans every quarter
- Patch and secure the PBX as recommended by the manufacturer

Remote Users
- Cell phones/ tablets to have automatic lockouts to prevent fraudulent use if lost or stolen
- Laptops are to have screen lockout and drive encryption where possible
- Limit remote user capabilities such as forwarding features
- Where possible encrypt voice connections to reduce unauthorized monitoring
1 Prepare your LAN for VoIP

When moving to a converged environment running both voice and data over IP, your LAN environment must be prepared to carry real-time voice traffic. This preparation typically focuses on two key areas:

1. Establishment of Virtual LANs (VLANs) for voice traffic, and
2. Establishment of Class of Service (CoS) handling for voice traffic.

![Figure 1: LAN environment using Virtual LANs and Class of Service](image)

It is highly recommended that voice and data packets be separated into distinct VLANs within the LAN environment. This improves utilization of system resources by reducing broadcast traffic, and prevents possible congestion conditions of one traffic type from affecting other traffic. Not utilizing VLANs may result in poor voice quality, high packet loss, client to server communication issues, and lost call control.

Use of Class of Service (CoS) marking for traffic in the LAN is also recommended when preparing for a VoIP implementation. Layer 2 Ethernet switches must support the IEEE 802.1p standard to provide CoS. This standard is part of the IEEE 802.1Q (IEEE, 2005) which defines the architecture of virtual bridged LANs (VLANs). CoS allows switches to distinguish packets and packet flows from each other, assigning labels to indicate the priority of packets. CoS enables packets to comply with configured resource limits and provides preferential treatment in situations where resource contention occurs. Without CoS enabled in the LAN switch, bandwidth contention may contribute to packet loss and latency resulting in poor VoIP performance.

2 Environment set-up for NGN SIP Trunking over Internet

Allstream NGN SIP Trunking Service architecture allows enhanced reliability of geographically redundant connection. Customers can benefit from this by configuring the IP PBX to connect to a primary NGN SIP Proxy Server (Allstream Session Border Controller (SBC)) and a secondary NGN SIP Proxy server (A SBC at a different physical location). Customers located in Ontario and eastward will use the Markham SBC as the primary interface and Calgary SBC as secondary interface. Customers located in Manitoba and westward will use the Calgary SBC as the primary interface and Markham SBC as secondary.
2.1 PBX Connectivity set-up

The following three configurations are supported for Customer LAN deployment with Allstream NGN SIP Trunking:

2.1.1 Configuration 1: PBX Connectivity using Public IP – no NAT

In this scenario, the PBX or VoIP equipment is accessible via the public Internet. The customer is not using NAT for VoIP traffic, so no NAT compensation occurs between the Allstream SBC cluster and the customer PBX. The following diagram is an illustration of this scenario.

![Figure 1: PBX Connectivity using Public IP – no NAT](image)

The public IP address used by the customer must be static, and the subnet is assigned by the ISP. The IP address and subnet information of the Allstream-facing VoIP equipment must be provided as part of the NGN SIP Trunking Internet order.

2.1.2 Configuration 2: PBX Connectivity using NAT with Application Layer Gateway (ALG)

Some customers may deploy an Application Layer Gateway (ALG). The primary purpose of an ALG is to manipulate or translate IP address information in the application layer. More specifically, the function of the ALG would replace the private IP address in the NGN SIP Invite and SDP message with the NAT’d public IP address for any outgoing traffic. Similarly, for any incoming traffic from the PSTN to the customer network, the ALG would replace the public IP address information in the NGN SIP Invite and SDP with the private IP address information. In this configuration, the static public IP address of the Allstream-facing router (in this example 74.13.23.1) must be provided to Allstream with the NGN SIP Trunking Internet order.

![Figure 2: PBX Connectivity using NAT with ALG](image)
2.1.3 Configuration 3: PBX Connectivity using NAT without ALG

In this configuration, the customer does not have their own ALG, and uses a router that performs NAT at layer three. All outgoing (private) traffic is NAT’d to a public IP address assigned by the customer’s ISP (typically the IP of the WAN Interface on the router, or an unused IP address in the provided block). For this configuration, the private IP of the customer PBX (in this example 192.168.1.35) must also be provided to Allstream in order for the Allstream SBC to communicate with the PBX. Therefore, both the static public IP address of the Allstream-facing router (in this example 74.13.23.1) AND the static private IP address of the VoIP equipment must be provided as part of the NGN SIP Trunking Internet order.

![Diagram of PBX Connectivity using NAT without ALG]

Figure 3: PBX Connectivity using NAT without ALG

2.2 Firewall Set-up

If your environment is protected from the Internet by a firewall, settings must be configured on your firewall to allow for NGN SIP Trunking signaling and media to pass through.

Adjust firewall to allow signaling and media to be received from the Allstream Session Border Controller at the IP address ranges provided in section above.

Allow for NGN SIP signaling utilizing UDP on port 5060.

Allow for RTP media utilizing UDP on ports 16000 to 64000

3 Environment set-up for NGN SIP Trunking over MPLS VPN

Allstream NGN SIP Trunking platform comprises of two fully redundant pairs of SBCs located at geographically diverse locations (Markham and Calgary) and dedicated for NGN SIP Trunks established over MPLS VPN. This architecture provides unparalleled robustness, reliability and security. Each SBC appears like another site in the customer VPN. Public IP addresses assigned for the SBC NGN SIP interface are not advertised and are not accessible over public Internet. Each customer’s NGN SIP traffic over MPLS stays totally private through dedicated VRFs /VLANs.
3.1 PBX Connectivity Setup

3.1.1 Configuration 1: PBX Connectivity via Private IP VPN Network

In this configuration, the PBX communicates with the Allstream SBC over a private MPLS VPN. This arrangement is similar to Configuration 1 above, since no NAT is required, and all addressing is contained in a private customer VPN. Customer LAN addressing may be statically assigned or assigned via DHCP.

![Figure 4: PBX Connectivity via Private IP VPN Network](image)

4 DHCP Considerations

VoIP requires that all endpoints including phones are assigned unique IP addresses. When using NAT, customer must ensure that all endpoints are assigned either static IP addresses or addresses via Dynamic Host Configuration Protocol (DHCP) within the LAN environment. Allstream does not provide DHCP services from the CE router. If customer is not using NAT (using public addresses for the VoIP network), ensure that all NGN SIP endpoints which will communicate directly with Allstream SBCs are assigned static IP addresses within the subnet provided by the ISP.

5 Programming the IP PBX

Refer to the manufacturer’s documentation for specific instructions on how to program and configure your IP PBX. Allstream can provide configuration guides for equipment that is pre-certified with Allstream NGN SIP Trunking. Speak to your Sales Engineer for more details.

Ensure that you program your IP PBX to use the same voice codec that you used when calculating required bandwidth for your order. Failure to do this may result in call degradation due to bandwidth congestion.

Please note the following notes for all new NGN SIP Trunking installations:

- The PBX may be programmed to outpulse either 10 digits (NPA-NXX-XXXX) or 11 digits (1+NPA+NXX-XXXX) for North American calls as desired.
Local calls to 211, 311 municipal services will not be supported. For any calls to these services, the IP PBX must be programmed to outpulse the appropriate local telephone number.

6 SIP and Media Specifications

NGN Signaling Specifications

<table>
<thead>
<tr>
<th>Protocol</th>
<th>SIP – RFC 3261</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport</td>
<td>UDP – port 5060</td>
</tr>
</tbody>
</table>
| Caller ID | P-Asserted-ID header (as per RFC3325)
A valid 10-digit Caller Identification must be sent |
| Caller ID Blocking | Privacy id header (per RFC3325) |
| Supported SIP methods | ACK, BYE, CANCEL, INVITE, OPTIONS, INFO, NOTIFY, PRACK, UPDATE
P-Asserted-ID per RFC3325
Privacy
Re-Invite to 0.0.0.0 or a=sendonly are supported for on-hold |
| SIP Authentication | Session border controller authenticates the customer PBX by using the PBX’s static IP address |
| Other Service Characteristics | Early SDP
INVITE without SDP
Unknown header: "Unknown"
Anonymous header: "Anonymous"
Supported Extensions: 100rel, timer |
| Error Condition Treatment | Unassigned Number - SIP 404 (no audio message)
SIP sessions Max out – SIP 503
Voice codec P-time miss-match - SIP 488
Session-Expires header is too small - SIP 422 |
| Signaling Parameters | maxSipMsgSize: 2048
Session timer: MIN-SE 600
Session timer: Session Expire (default): 3600
retransmissionT1: 500
retransmissionT2: 4000
retransmissionT4: 5000 |
| QoS | Diffserv: DSCP for signaling is CS5 (real-time class) |
| SIP REFER | Yes |

Media Specifications

<table>
<thead>
<tr>
<th>Protocol</th>
<th>RTP – RFC1889, RFC3264</th>
</tr>
</thead>
</table>
| Transport | UDP – port range
16000 - 64000 |
| DTMF Support | RTP In-band and via RFC2833 |
| Codecs | G.711a/µ: Frame (packet) time: 20ms (50 packets per second)
G.729: 8 Kbps, 20ms frame size
G.722: 20ms (High Definition Voice Codec) |
| Network Transcoding | Yes |
| Voice Activity Detection | No |
| Early Media Support | Yes |
| Fax | G.711 pass-through, T.38 |
| QoS | Diffserv: DSCP for media is EF (real-time class) |
Service Features

<table>
<thead>
<tr>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>99.999% VOIP core network redundancy</td>
</tr>
<tr>
<td>Reserve DID number</td>
</tr>
<tr>
<td>TN (Telephone Number) porting</td>
</tr>
<tr>
<td>Trunk Overflow to TN</td>
</tr>
<tr>
<td>Trunk Failover to TN</td>
</tr>
<tr>
<td>Multi-endpoint failover</td>
</tr>
<tr>
<td>Multi-endpoint overflow</td>
</tr>
<tr>
<td>Traffic Load-Sharing (Maximum 2 endpoints)</td>
</tr>
<tr>
<td>Call Routing</td>
</tr>
<tr>
<td>911 service</td>
</tr>
<tr>
<td>Local Directory Services (411)</td>
</tr>
<tr>
<td>Repair Service 611</td>
</tr>
<tr>
<td>Message Relay Service (MRS) 711</td>
</tr>
<tr>
<td>Account codes</td>
</tr>
<tr>
<td>14.4 modem</td>
</tr>
<tr>
<td>Basic Listings</td>
</tr>
<tr>
<td>Collect Calls</td>
</tr>
<tr>
<td>E.164</td>
</tr>
</tbody>
</table>